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Summary

This paper provides an analytical formulation to predict scheduling success for a class of

problems frequently referred to as activity scheduling. Space Network communications

scheduling is an example of activity scheduling. The principal assumption is that the activity start

times are randomly distributed over the available time in the time line.

The formulation makes it possible to estimate how much of the demand can be scheduled as a

function of the demand, number of resources, activity duration, and activity flexibility. The paper

includes computed results for a variety of resource and demand conditions. The results

demonstrate that even with highly flexible activities, it is difficult to schedule demand greater

than 60 percent of resources without the use of optimization and conflict resolution capabilities

in the scheduling system.
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PREDICTING SCHEDULING SUCCESS

Dr. Fredric Messing

Computer Sciences Corporation

Abstract

An analytical formulation is derived to predict

the success of scheduling activities on discrete

multiple resource time lines using sequential

approaches. Success is defined in terms of the

probability of scheduling a single activity and

the number and cumulative duration of

scheduled activities. The results are extended

to include scheduling activities with flexible

start times. The principal assumption is that

the activity start times are randomly

distributed over the available time in the time

line.

Introduction

This analysis addresses a type of scheduling

problem frequently referred to as activity

scheduling. Each activity is assumed to use

one of a set of equivalent resources. Each

resource can be used to perform only one

activity at any time. The activities are

independent and have no predecessor

relationships. Each activity has a specified

duration and start time, although the

possibility that the start time is flexible is also

considered.

Scheduling becomes challenging when not all

of the activities can be scheduled because of

conflicting demand for the resources. The

question then becomes: which activities get

scheduled and at what times, and which do not

get scheduled?

Ideally, an objective should be defined that

can be used to identify the optimal schedule

and select a scheduling approach that achieves

or nearly achieves an optimal schedule as

defined by that objective. A typical objective

might consist of maximizing the sum of

values assigned to each scheduled activity. If

the value were the same for each activity, then

maximizing the value is equivalent to

maximizing the number of scheduled

activities. If the value were proportional to the

duration of the activity, then maximizing the

value is equivalent to maximizing the total

time scheduled.

Because optimally solving such problems is

complex, most approaches do not attempt to

achieve optimality directly and have resorted

to a sequential scheduling approach (see

Figure 1). A sequential scheduling approach

typically begins by using heuristically

determined metrics to order the activities by

priority. It then considers each activity in
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Figure 1. Sequential scheduling approaches

Activitiee to be scheduled

Scheduled activitiee

priority order and attempts to find an available

time for using one of the resources. Assuming

such a time exists, a second heuristic approach

determines the start time. If previously

scheduled activities conflict with all possible

start times, the activity is not scheduled. In

either case, the next activity on the list is then

considered for scheduling.

The principal method for evaluating

scheduling approaches is to determine the

extent to which the objective is met.

Evaluation is typically accomplished by

establishing benchmark problems and

generating test schedules. The evaluation

criteria generally include the fraction of

activities and the fraction of activity time that

gets scheduled. This paper provides an

analytical technique for predicting scheduling

success in these terms.

A closely related issue is the fraction of

available resource time that gets scheduled.

Providing resources is generally costly, and,

before spending money to provide additional

resources, managers want to be sure that the

existing resources are being used efficiently to

perform the specified activities.

The first part of this paper presents the

derivation of the probability of a single

additional activity being successfully

scheduled on either a single or multiple

resources. An iterative process is then defined

to determine the overall probability of

successfully scheduling any number of

activities. Next the benefits to improved

scheduling success from start-time flexibility

are included. Finally, the distribution of gaps

remaining in the time line is discussed.

Single-Activity Scheduling Success

Scheduling success probability is derived by

considering an attempt to schedule a single

additional activity on a resource time line that

contains a number of activities already

scheduled. Given a single, discrete, resource

time line (see Figure 2) with n randomly

scheduled activities at start times and with

durations

{si, di}i=l,n
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Figure 2. Scheduling a new activity in a resource time line that contains
previously scheduled activities

Time lineof
scheduled activities [:::_ t=__--'7 .... _ d_ ______t,
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a c+_

Conditions under which

the new activity will
conflict with a

previously scheduled
activity

Si si+di
I dl t

V-V-7
si < a< si+di

such that

si + di < si+l

consider a new activity with duration _5 and

random start time a. The new activity will

not be scheduled successfully if its start time

conflicts with any previously scheduled

activity (s i < _ < s_ + d_) or if a previously

scheduled activity has a start time that

conflicts with the new activity

(6<Si_tT-F5).

Since t_ is uncorrelated with any previously

scheduled activity, the probability that it will

not conflict with a previously scheduled

activity is given by the fraction of the time

line remaining unscheduled

where

ta = the length of the time line

and the remaining time is given by

t_ = ta- _ di
i= I ,n

The probability that no previously scheduled

activity has a start time that conflicts with the

new activity is determined by considering a

compressed time line of length tr (see

Figure3), generated by removing the

scheduled activity durations from the
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Figure 3. Compressed time line with scheduled activity durations removed

Available time line

t=O . .

Compressed time line

t=t,
I

available time line. The previously scheduled

activities appear with zero duration randomly

distributed throughout the time line. For each

of the n previously scheduled activities, the

probability that start time s i will not conflict

with the new activity (s i < c or si > _ + 8) is

given by

under the assumption that

<< tr and di << ta

to avoid any effects from the ends of the time

line. Combining the probability that a is not

in conflict with any previously scheduled

activity, with the probability that none of the

si are in conflict with the new activity, results

in the probability Pt that the new activity can

be scheduled

tr 5

P1 = 1-U

In the limit that n becomes large while (tfla)

remains fixed

P1 -->lim P1
n----)c_

_ (I--L)<_=(1 L)e-

where

L
_, di

tr
i=l,n 1 -- -- = scheduled load

ta ta

1 Lta
(d) = _ Z di = --if-

i= 1 ,n

= average duration of scheduled
activities

If each activity can be scheduled on any of m

equivalent unconstrained resources, then P_
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Figure4.Single-activityschedulingsuccess
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becomes the probability that the new activity

can be scheduled on each of the m resources.

The probability of successfully scheduling an

additional activity on any of the m resources is

then

Pm = 1-(1-P_) m

Figure 4 shows the probability of successfully

scheduling a new activity of average duration

as a function of the already scheduled load.

For small values of L, the probability

decreases as 1-L". For larger values of L, the

exponential causes the probability to fall more

rapidly. For a single resource, by the time L

has reached 30 percent, the scheduling success

for a new activity has fallen to 46 percent.

Four equivalent resources are required to keep

the single-activity scheduling success above

50 percent for 50 percent loading.

Integrated Scheduling Success

Scheduling success integrated over all

activities is determined by applying P,,

iteratively. Consider N activities with random

start times to be scheduled on m equivalent

resources. The first m activities can each be

scheduled successfully without conflict, one

activity on each resource. Therefore, the

number of activities and the scheduled load

are

n(m) = m

L(m)
ta
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For activities j=m+l,N, the steps are

1:

2:

Compute the probability Pm(J) to

schedule activity j, given n(j-1)

previously scheduled activities out

of j-1 attempts

Update the number of activities

scheduled out of j attempts

n(j) = n(j - 1) + Pm(j)

3: Compute the scheduled load
P_O)d_

L(]) =L(]- 1) + ,---?--

The average scheduling success can then be

computed as the ratio of the number of

scheduled activities to the number of

attempted activities

n(N)
N

or as the ratio of the scheduled time to the

attempted time

taL(N)

Edj
pl,N

If all of the activities are of the same duration,

then the two measures are identical. Figure 5

illustrates the integrated scheduling success

when all activities are of the same duration. If

the demand is for 50 percent of the available

time on 4 resources, 90 percent of the

activities will be scheduled successfully. With

2 resources, 79 percent will be scheduled

successfully. If the demand is for 70 percent

of the resources, the success for 4 resources

drops to 79 percent and it drops to 69 percent

for 2 resources.

Start-Time Flexibility

The activity start times for some scheduling
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Figure 6. Start-time flexibility
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For larger values of x,

resolving the conflict is

problems are not fixed. Rather, they have

flexibility '_ such that they can be scheduled to

start at any time between G and G + x. The

benefit of the start-time flexibility can be

determined by considering an activity (see

Figure 6) with start time G that conflicts with

a previously scheduled activity of duration d_,

scheduled to start at time s_, s_< G < si + d_. If

x > si + d_ - G, then the conflict with activity i

can be resolved by adjusting the new activity

start time to s_+d,. The probability that this

resolution is possible is given by

for

{'C < di}

the probability of

100 percent. The

conflict

summed

activities

average probability for resolving a conflict

with the new event start time is given by the

product of the probability that the new activity

conflicts with the previously scheduled

activity i, multiplied by the probability that a

with activity i can be resolved,

over all previously scheduled

Z --ta--
i=l,n

wherefis the normalized flexibility

The probability of successfully scheduling the

new activity is determined by multiplying Lf

by the probability that another activity will

have been scheduled in conflict with the

adjusted activity and by adding the result to

the previously determined value of P1

ILl= -- O--L) (PI (1 L + Lf)e-

Figure 7 shows the probability for

successfully scheduling a new activity of

flexibility f= 1 of average duration as a

function of the already scheduled load.

Because of the flexibility, this data shows

significant improvement in scheduling success

when compared with Figure 4. For a single

resource scheduled at 30 percent of available
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Figure7. Single-activityschedulingsuccesswith flexible start times
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time, the scheduling success for a new activity

increases from 46 percent to 65 percent. With

4 equivalent resources, 50 percent scheduling

success can be maintained up to a demand of

65 percent of available resources.

The improvement in integrated scheduling

success is illustrated in Figure 8. Increasing

flexibility from f = 0 to f = 0.5 increases the

Figure 8. Integrated scheduling success with varying flexibility
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scheduling success by approximately 5

percentfor high levels of demand.Increasing

flexibility to f = 1 increases scheduling

success by an additional 5 percent.

Duration Flexibility

As previously indicated, the exponential term

in PI dominates the linear term for larger

values of scheduled load L. The impact of the

exponential term can be partially reduced by

first scheduling the larger duration activities

and then scheduling the shorter duration

activities.

Figure 9 illustrates scheduling success when

the demand above 40 percent is divided into

twice the number of activities, e_tch activity of

half the duration of the activities below 40

percent. This success is compared to

scheduling success when all activities have the

same duration. With the reduced-duration

activities, scheduling success is increased by

approximately 5 percent. In practical

applications, durations of unschedulable

activities can be reduced to improve

scheduling success.

Highly Flexible Start Times

As the flexibility of start times increases, the

probability of successfully scheduling an

activity increases. For values of "c>d_,

conflicts of the new activity start time ff with

a previously scheduled activity can always be

resolved (see Figure 6) by delaying the new

activity to start at the end of the conflicting
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activity. The linear term in the scheduling

probability is eliminated, and the single

resourcesuccessprobabilitybecomes

-- (I-L) (e>P1 e-

This probability is actually a lower bound.

The new activity is also schedulable if the

start time si of a previously scheduled activity

conflicts with the new activity and if

O+T>S_ +d_.

For values of 't: > d i +di+ 1 + 5 (for an average-

duration activity 5=<d>, this value

corresponds approximately to f>3); the

success probability increases further, as

illustrated in Figure 10. If the length gi of the

first gap following the start time cr of the new

activity is less than the duration of the new

activity, g_ < _5,then the new activity will not

be schedulable in that gap. This probability is

given by

)

If the new activity is not schedulable in the

first gap, then its start time can be delayed to

the end of the next previously scheduled

activity. The probability is identical that the

gap following this activity is also too small in

which to schedule the new activity.

Consequently, the probability that the new

activity will be schedulable in one of these

two gaps is given by

PI=I-(1- 2

As z increases further, scheduling success

continues to increase. Figure 11 illustrates the

Figure 10. Highly flexible start times

O
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147



Figure11.Single-activityschedulingsuccessfor highlyflexiblestarttimes
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significant gain in scheduling success that

accrues from this added flexibility for an

average-duration activity. It also illustrates

that, even with this amount of flexibility, it is

difficult to successfully schedule beyond a

demand of 60 percent of the resources.

This conclusion depends on the assumption

that scheduled activities are placed randomly

within their schedulable start-time flexibility.

Techniques exist for selecting start times to

optimize resource use, These techniques

effectively reduce the size of small gaps and

increase the size of large gaps, thereby

improving scheduling success.

Gap Size Distribution

The difficulty in scheduling more than 60

percent of the resources results from both the

time line being heavily scheduled and the

remaining gaps being too small for additional

activities to be scheduled. This problem can

be understood by determining the distribution

of gap sizes.

The probability v(g) for an individual gap to

have a length greater than value g can be

determined by selecting the end, s_ + d i, of any

scheduled activity and by considering the

probability that no other activity is scheduled

within gap g from this point. This probability

is precisely the same probability derived

earlier for scheduling an activity with a

nonconflicting start time

L g

V(g) =
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Thedistributionof gap sizes (see Figure 12) is

given by the probability of finding a gap

between g and g+dg

(1-_L)
,-, dg -- (l-L) e- _]

As the resource becomes more heavily

scheduled, the remaining gaps become

significantly smaller than the average activity

duration, making them unusable for

scheduling average-duration activities. The

amount of time T(g) remaining in gaps larger

than g is given by

T(g) =

= n(g +

ng_d-_2dg

g

(1-L)(d)L e- (_-L)Ca_

The ratios of T(g) to t, and t r are given by

( )E 'lT(g) Lg (I-L) (-'a_
--U-= _+(1-L) e-

and

r(g) Lg e-I,,_--L,_>]
-77-, = 1 + (1-_(d)

which, in the case g=<d>, go to

L

T(g...__)= e-O_L----S
ta

L

T(g) __ 1 -- (I-L'--"S
t-T- (1-L)e

Figure 13 illustrates the fraction of the time

line remaining in gaps larger than the average

activity duration as a function of scheduled

load L. For example, when 50 percent of the

time line has been scheduled, only 37 percent

of it consists of gaps larger than an

2.50

Figure 12. Gap size distribution
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Figure 13. Fraction of time line in gaps larger than average-duration activities
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average-duration activity. When L reaches 70

percent, only 10 percent of the time line

consists of gaps larger than an

average-duration activity. The remaining 20

percent is in gaps that cannot be used to

schedule activities of average or larger

duration. The time in these gaps can be

recovered by adjusting activity start times to

reduce the size of small gaps and increase the

size of large gaps.

Conclusion

This paper provides formulae to compute

success for scheduling individual activities

with start-time and duration flexibility on

single or multiple resources. An iterative

technique is presented for determining

scheduling success integrated over all

schedulable activities. It demonstrates the

significant increase in scheduling success that

can be achieved when scheduling flexible

activities. It also provides a distribution of

sizes of gaps remaining in the time line and

demonstrates the dramatic decrease in time

remaining in large gaps as scheduled time

increases.

This analytical formulation can be used to

calculate realistic estimates of scheduling

success without actually developing

schedules. Such estimates can be used for

capacity planning or predicting scheduling

success for varying combinations of activities

and resources.
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